2.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}(n∈{N^*})$.
(1)計(jì)算a1,a2,a3的值,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

分析 (1)利用遞推關(guān)系式求解數(shù)列a1,a2,a3的值,猜想{an}的通項(xiàng)公式;
(2)利用數(shù)學(xué)歸納法的證明步驟,逐步證明即可.

解答 解:(1)當(dāng)n=1時,${a_1}={S_1}=\frac{1}{2}a_1^2+\frac{1}{2}$,
得a1=1;${a_1}+{a_2}={S_2}=\frac{1}{2}a_2^2+1$,得a2=2,
${a_1}+{a_2}+{a_3}={S_3}=\frac{1}{2}a_3^2+\frac{3}{2}$,得a3=3,
猜想an=n.
(2)證明:(。┊(dāng)n=1時,顯然成立,
(ⅱ)假設(shè)當(dāng)n=k時,ak=k,
則當(dāng)n=k+1時,${a_{k+1}}={S_{k+1}}-{S_k}=\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-(\frac{1}{2}a_k^2+\frac{k}{2})$=$\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-(\frac{1}{2}{k^2}+\frac{k}{2})$,
整理得:$a_{k+1}^2-2{a_{k+1}}-{k^2}+1=0$,即[ak+1-(k+1)][ak+1+(k-1)]=0,
結(jié)合an>0,解得ak+1=k+1,
于是對于一切的自然數(shù)n∈N*,都有an=n.

點(diǎn)評 本題考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法的應(yīng)用,考查邏輯推理能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a1=2,an≠0,且an+1-an=2an+1an,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$tanα=\frac{1}{7}$,$tanβ=\frac{1}{3}$,求tan(α+β);tan(α+2β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a=log35,b=log95,則有( 。
A.a>b>0B.0<a<bC.a<b<0D.0>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線的虛軸長為2,焦距為$2\sqrt{3}$,則雙曲線的漸近線方程為(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow a,\overrightarrow b$均為單位向量,并且它們的夾角為120°,那么$|{\overrightarrow a-2\overrightarrow b}|$等于( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.運(yùn)行如圖所示的程序框圖,若輸入的實(shí)數(shù)為2,則輸出的n為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$
(Ⅰ)求f(x)的表達(dá)式
(Ⅱ)求函數(shù)f(x)在[1,e2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
A.3cm3B.5cm3C.4cm3D.6cm3

查看答案和解析>>

同步練習(xí)冊答案