7.函數(shù)y=x-2是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

分析 求得定義域,再計算f(-x)和f(x)的關系,即可判斷奇偶性.

解答 解:y=x-2的定義域為{x|x≠0},
關于原點對稱,
且f(-x)=(-x)-2=x-2=f(x),
即函數(shù)為偶函數(shù).
故選:B.

點評 本題考查函數(shù)的奇偶性的判斷,注意運用定義法,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若點P是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的漸近線上任意一點,下列正確的是(  )
A.存在過點P的直線與雙曲線相切
B.不存在過點P的直線與雙曲線相切
C.至少存在一條過點P的直線與該雙曲線沒有交點
D.存在唯一過點P的直線與該雙曲線沒有交點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知x,y滿足$\left\{\begin{array}{l}2x-y≥0\\ x+y-1≥0\\ x-2y-1≤0\end{array}\right.$,則$\frac{y-1}{x+1}$的取值范圍是( 。
A.$[-\frac{5}{2},-\frac{1}{4}]$B.$[-\frac{5}{2},2]$C.$[-\frac{1}{2},2)$D.$[-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=b•ax(a>0,且a≠1,b∈R)的圖象經(jīng)過點A(1,6),B(3,24).
(1)設g(x)=$\frac{1}{f(x)+3}$-$\frac{1}{6}$,確定函數(shù)g(x)的奇偶性;
(2)若對任意x∈(-∞,1],不等式($\frac{a}$)x≥2m+1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,AB=$\sqrt{3}$,E1為A1B1中點.
(1)證明:B1D∥平面AD1E1;
(2)求平面ACD1和平面CDD1C1所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.冪函數(shù)f(x)的圖象經(jīng)過點(2,8),則f(x)的解析式是f(x)=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,內角A,B,C所對的邊分別是a,b,c.若b=3,c=2$\sqrt{3}$,A=30°,求角B、C及邊a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合A={x|(a-1)x2-x+2=0}有且只有一個元素,則a=1或$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知直線l1:(m+1)x+y+m-2=0和直線l2:2x+my-1=0(m∈R).
(1)當l1⊥l2時,求實數(shù)m的值;
(2)當l1∥l2時,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案