一只口袋內(nèi)裝有大小相同的3個球,其中2個白球,1個黑球,從中每次任取1球,取后放回,連續(xù)取兩次,求取出的2個球中,恰有1個黑球的概率.
分析:仍然采用列舉法,但基本事件已發(fā)生變化. 解:分別記白球為1,2號,黑球為3號,則一切可能的結(jié)果組成的基本事件為:(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(1,1),(2,2),(3,3)(括號內(nèi)左邊的數(shù)表示第一次取出的球,右邊的數(shù)表示第二次取出的球),共有9個基本事件.用B表示“取出的2個球中,恰有1個黑球”這一事件,則B由(1,3),(3,1),(2,3),(3,2)4個基本事件組成. 因此P(B)=. 點評:“有放回”和“無放回”是古典概型的概率計算中兩種不同的抽取方法.顯然,在“有放回”抽取中,依次摸出的球可以重復,且摸球可無限地進行下去;而在“無放回”抽取中,依次摸出的球不會重復出現(xiàn),且摸球只能進行有限次. |
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com