如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求證:PC⊥AB;
(Ⅱ)求二面角B-AP-C的大小.
解法一:
(Ⅰ)取AB中點D,連結(jié)PD,CD.
∵AP=BP,∴PD⊥AB.
∵AC=BC. ∴CD⊥AB.
∵PD∩CD=D. ∴AB⊥平面PCD.
∵PC平面PCD,∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP, ∴△APC≌△BPC.
又PC⊥AC, ∴PC⊥BC.
又∠ACB=90°,即AC⊥BC,
且AC∩PC=C,
∴BC⊥平面PAC.
取AP中點E,連結(jié)BE,CE.
∴AB=BP,∴BE⊥AP.
∵EC是BE在平面PAC內(nèi)的射影,
∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE=,
∴sin∠BEC=
∴二面角B-AP-C的大小為arcsin
解法二:
(Ⅰ)∵AC=BC,AP=BP,
∴△APC≌△BPC.
又PC⊥AC.
∴PC⊥BC.
∵AC∩BC=C,
∴PC⊥平面ABC.
∵AB平面ABC,
∴PC⊥AB.
(Ⅱ)如圖,以C為原點建立空間直角坐標(biāo)系C-xyz.則C(0,0,0),A(0,2,0),B(2,0,0).設(shè)P(0,0,t),
∵|PB|=|AB|=2,
∴t=2, P(0,0,2).
取AP中點E,連結(jié)BE,CE.
∵|AC|=|PC|,|AB|=|BP|,
∴CE⊥AP, BE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
∵E(0,1,1),
∴cos∠BEC=
∴二面角B-AP-C的大小為arccos
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
x |
a |
y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com