5.已知復(fù)數(shù)z=(5+2i)2那么Z的實(shí)部是21.

分析 直接利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得答案.

解答 解:由z=(5+2i)2=25+20i+4i2=21+20i,
得z的實(shí)部是21.
故答案為:21.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)公比q>0的等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,滿(mǎn)足b1=1,Tn=n2bn,n∈N*.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)Cn=(Sn+1)(nbn-λ),若Cn+1<Cn,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.把十進(jìn)制數(shù)132轉(zhuǎn)換成二進(jìn)制數(shù)是10000100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知多面體EABCDF的底面ABCD是邊長(zhǎng)為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且$FD=\frac{1}{2}EA=1$.
(Ⅰ)記線段BC的中點(diǎn)為K,在平面ABCD內(nèi)過(guò)點(diǎn)K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線EB與平面ECF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數(shù)62638228
(1)作出這些數(shù)據(jù)的頻數(shù)分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值來(lái)代表這種產(chǎn)品質(zhì)量的指標(biāo)值);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的85%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.隨機(jī)變量X~N(1,4),若p(x≥2)=0.2,則p(0≤x≤1)為( 。
A.0.2B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.變量x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,若存在x,y使得xy=k(k>0),則k的最大值是(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i為虛數(shù)單位,$\overline z$是復(fù)數(shù)z的共軛復(fù)數(shù),若$z=cos\frac{2π}{3}+isin\frac{2π}{3}$,則$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在底面為正三角形的直棱柱(側(cè)棱垂直于底面的棱柱)ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為棱BD的中點(diǎn),點(diǎn)E為A,C上的點(diǎn),且滿(mǎn)足A1E=mEC(m∈R),當(dāng)二面角E-AD-C的余弦值為$\frac{\sqrt{10}}{10}$時(shí),實(shí)數(shù)m的值為( 。
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案