ab,在同一坐標系下,y=logax(a>0,a≠1)與y=logbx(b>0,b≠1)的圖象間有幾類關系?

在每類中作直線y=1,分別交y=logaxy=logbx的圖象于A(a,1)、B(b,1),你能從中觀察出a、b之間的大小關系嗎?

解:有三類可能情形,分別如圖(1)(2)(3)所示.

根據(jù)點A(a,1)、B(b,1)的位置,可以觀察出如下結論:

(1)中a>1>b>0;(2)中ba>1;(3)中0<ab<1.

點評:由本例觀察出的結論可以發(fā)現(xiàn),在同一坐標系內,對數(shù)函數(shù)在x軸上方(y>0)的部分圖象,在右邊的對數(shù)函數(shù)的底數(shù)較大.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線l1:x+2y-2=0與直線l2:ax+y-a=0交于點P,l1與y軸交于點A,l2與x軸交于點B,若A,B,P,O四點在同一圓周上(其中O為坐標原點),則實數(shù)a的值是(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實數(shù),它的前n項和記作Sn,設集合A={(an,
Sn
n
)|n∈N*},B={(x,y)|
1
4
x2-y2=1,x,y∈R}.試問下列結論是否正確,如果正確,請給予證明;如果不正確,請舉例說明:
(1)若以集合A中的元素作為點的坐標,則這些點都在同一條直線上;
(2)A∩B至多有一個元素;
(3)當a1≠0時,一定有A∩B≠∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黑龍江)設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點;
(1)若∠BFD=90°,△ABD的面積為4
2
;求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x+1|+|ax+1|,已知f(-1)=f(1),且f(-
1
a
)=f(
1
a
)
(a∈R,且a≠0),函數(shù)g(x)=ax3+bx2+cx(b∈R,c為正整數(shù))有兩個不同的極值點,且該函數(shù)圖象上取得極值的兩點A、B與坐標原點O在同一直線上.
(1)試求a、b的值;
(2)若x≥0時,函數(shù)g(x)的圖象恒在函數(shù)f(x)圖象的下方,求正整數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

同步練習冊答案