(2012•貴陽模擬)橢圓
x2
4
+
y2
3
=1
上有n個(gè)不同的點(diǎn):P1,P2,Pn,橢圓的右焦點(diǎn)為F,數(shù)列{|PnF|}是公差大于
1
100
的等差數(shù)列,則n的最大值為(  )
分析:橢圓上的點(diǎn)到右焦點(diǎn)最大距離為:a+c=3,到右焦點(diǎn)最小距離是a-c=1,2=(n-1)d,要使公差大于
1
100
,且n最大,有d=
2
n-1
1
100
,由此能求出n的最大值.
解答:解:橢圓上的點(diǎn)到右焦點(diǎn)最大距離為:a+c=3,
到右焦點(diǎn)最小距離是a-c=1,
即|PnF|=a+c=3,|P1F|=a-c=1,
∵|PnF|=|P1F|+(n-1)d,
∴a+c=a-c+(n-1)d,
即3=1+(n-1)d,
∴2=(n-1)d,
要使公差大于
1
100
,且n最大,
則d=
2
n-1
1
100
,n-1<200,n<201.
所以n最大值為200.
故選B.
點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若對(duì)于任意實(shí)數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)直線x-2y+1=0關(guān)于直線x=3對(duì)稱的直線方程為
x+2y-7=0
x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
32
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若函數(shù)f(x)定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域?yàn)镽,g(x)恒大于0,且對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否為V形函數(shù),并說明理由;
(2)當(dāng)g(x)=x2+2時(shí),證明:g(x)是對(duì)數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿足對(duì)任意x∈R,有f(x)≥2,問f(x)是否為對(duì)數(shù)V形函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若實(shí)數(shù)a、b、m滿足2a=5b=m,且
2
a
+
1
b
=2
,則m的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案