分析:(1)根據(jù)b
n=a
2n,a
n•a
n+1=
()n,作商,利用等比數(shù)列的定義,即可得到結(jié)論;
(2)由(1)知,
bn=()n,根據(jù)b
n=a
2n,可得數(shù)列的通項,從而可求數(shù)列的和;
(3)64•T
2n•a
2n≤3(1-ka
2n)即得64•3[1-
()n]•
≤3(1-k•
),分離參數(shù),利用基本不等式,即可求得結(jié)論.
解答:(1)證明:∵b
n=a
2n,a
n•a
n+1=
()n∴
=
=
=
-------------------------3f
所以{b
n}是以b
1=
為首項,公比為
的等比數(shù)列.----------------------------4f
(2)解:由(1)知,
bn=()n,
當n=2k(k∈N
*)時,
an=a2k=bk=()k;------------------------------5f
當n=2k-1(k∈N
*)時,
an=a2k-1=()k-1-----6f
即
an= | (),n為正奇數(shù) | (),n為正偶數(shù) |
| |
--------------------------------------------7f
∴T
2n=(a
1+a
3+…+a
2n-1)+(a
2+a
4+…+a
2n)=
+
=3[1-
()n]------9f
(3)解:由(2),64•T
2n•a
2n≤3(1-ka
2n)即得64•3[1-
()n]•
≤3(1-k•
)------10f
所以k≤
2n+-64-------------------------------------------------11f
因
2n+-64≥16-64=-48(當n=3時等號成立)---------------13f
即所求的k的最大值為-48.------------------------------------------------14f