分析 設(shè)直線AB的方程為x=my+1,代入拋物線y2=8x,可得y2-8my-8=0,|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$,利用基本不等式即可得出結(jié)論.
解答 解:設(shè)直線AB的方程為x=my+1,代入拋物線y2=8x,可得y2-8my-8=0,
設(shè)A(x1,y1),B(x2,y2),則y1+y2=8m,y1y2=-8,
∴|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{16}{{y}_{2}}$≥4$\sqrt{2}$,當(dāng)且僅當(dāng)y2=4$\sqrt{2}$時(shí),取等號(hào),即|EG|的最小值為4$\sqrt{2}$,
故答案為:4$\sqrt{2}$.
點(diǎn)評(píng) 本題考查|EG|的最小值的求法,具體涉及到拋物線的簡(jiǎn)單性質(zhì),直線與拋物線的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20種 | B. | 30種 | C. | 40種 | D. | 60種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-2,-1} | B. | {-2} | C. | {-1,0,1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a|-1≤a≤1} | B. | {a|a≤-1} | C. | {a|a≤-1或a≥1} | D. | {a|a≥1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com