已知,如圖,在平行四邊形ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.
(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
(1)根據(jù)三角形全等的判定定理可知結(jié)論。
(2)結(jié)合平行四邊形的判定定理可知,只要證明一組對邊平行且相等,既可以得到證明。
試題分析:證明:(1)四邊形ABCD是平行四邊形,
∴∠DAB=∠BCD,
∴∠EAM=∠FCN, 2分
又∵AD∥BC,
∴∠E=∠F. 3分
在△AEM與△CFN中,
∠EAM=∠FCN AE="CF" ∠E=∠F ,
∴△AEM≌△CFN 5分
(2)∵四邊形ABCD是平行四邊形,
∴AB ∥= CD, 6分
又由(1)得AM=CN,
∴BM ∥= DN, 8分
∴四邊形BMDN是平行四邊形. 9分
點評:解決的關鍵是利用角相等,和邊相等來證明全等,同時利用平行四邊形的判定定理,得到證明,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知,如圖,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
(1) 求證:FA∥BE;
(2)求證:
;
(3)若⊙O的直徑AB=2,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,AB、CD是⊙O的兩條平行切線,B、D為切點,AC為⊙O的切線,切點為E.過A作AF⊥CD,F(xiàn)為垂足.
(1)求證:四邊形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半徑.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如右圖,以半圓的一條弦AN為對稱軸將
折疊過來和直徑MN交于點B,如
果MB:BN=2:3,且MN=10,則弦AN的長為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
AB為⊙
O的直徑,過點
B作⊙
O的切線
BC,
OC交⊙
O于點
E,
AE的延長線交
BC于點
D。
(1)求證:
CE2 =
CD ·
CB;
(2)若
AB =
BC = 2,求
CE和
CD的長。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,PA為
0的切線,A為切點,PBC是過點O的割線,PA ="10,PB" =5、
(I)求證:
;
(2)求AC的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(滿分10分)
如下圖,
AB、
CD是圓的兩條平行弦,
BE//
AC,
BE交
CD于
E、交圓于
F,過
A點的切線交
DC的延長線于
P,
PC=
ED=1,
PA=2.
(I)求
AC的長;
(II)求證:
BE=
EF.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M, AC⊥BD,E是DC中點連結(jié)EM交AB于F,作OH⊥AB于H,
求證:(1)EF⊥AB (2)OH=ME
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖3,PAB、PCD為⊙O的兩條割線,若 PA=5,AB=7,CD=11,
,則BD等于
.
查看答案和解析>>