已知橢圓(a>b>0)的離心率為,點(diǎn)M(4,1)是橢圓上一定點(diǎn),直線l:y=x+m交橢圓于不同的兩點(diǎn)A、B.
(1)求橢圓方程;
(2)求m的取值范圍;
(3)求△OAB面積的最大值.(點(diǎn)O為坐標(biāo)原點(diǎn))
【答案】分析:(1)由橢圓(a>b>0)的離心率為,知a=2k,c=,b2=k2,由橢圓過(guò)點(diǎn)M(4,1),解得k2=5,由此能求出橢圓方程.
(2)將y=x+m代入,并整理得5x2+8mx+4m2-20=0,由△=(8m)2-20(4m2-20)>0,能求出m的取值范圍.
(3)設(shè)A(x1,y1),B(x2,y2),則,,k=1,=,O到直線AB的距離d=,由此能求出△OAB面積的最大值.
解答:解:(1)∵橢圓(a>b>0)的離心率為
∴a=2k,c=,b2=k2,
∵橢圓過(guò)點(diǎn)M(4,1),
,解得k2=5,
故橢圓方程為
(2)將y=x+m代入,并整理得5x2+8mx+4m2-20=0,
△=(8m)2-20(4m2-20)>0,
解得:-5<m<5.
(3)設(shè)A(x1,y1),B(x2,y2),
,,k=1,

=,
∵O到直線AB的距離d=,
∴△OAB面積≤5.
當(dāng)且僅當(dāng)m=±5時(shí),取最大值.
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省、陽(yáng)東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),,求k的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案