設(shè)函數(shù)f(x)=sin(?x+?),其中?>0,-
π
2
<?<
π
2
,給出四個論段:
①它的周期是π 
②它的圖象關(guān)于直線x=
π
12
對稱  
③它的圖象關(guān)于點(diǎn)(
π
3
,0)
對稱
④在區(qū)間(-
π
6
,0)
上是增函數(shù),
以其中兩個論段作為條件,另兩個論段作為結(jié)論,寫出一個你認(rèn)為正確的命題______.
設(shè)函數(shù)f(x)=sin(?x+φ),
若①它的周期是π,則根據(jù)周期公式可得ω=
π
=2,f(x)=sin(2x+φ)
②它的圖象關(guān)于直線x=
π
12
對稱成立,則2×
π
12
+
φ=
π
2
+kπ

φ=kπ+
1
3
π

-
π
2
<φ<
π
2
,∴φ=
1
3
π

∴f(x)=sin(2x+
1
3
π

f(
π
3
)=0
,
-
π
2
<2x+
π
3
π
2
可得函數(shù)的一個單調(diào)遞增區(qū)間(
12
π
12
?(-
π
6
,0)

故③④正確
①③?②④也可
故答案為:①②?③④或①③?②④
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π6
)-1(ω>0)的導(dǎo)數(shù)f′(x)的最大值為2,則f(x)的圖象的一個對稱中心的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
),現(xiàn)有下列結(jié)論:
(1)f(x)的圖象關(guān)于直線x=
π
3
對稱;
(2)f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對稱
(3)把f(x)的圖象向左平移
π
12
個單位,得到一個偶函數(shù)的圖象;
(4)f(x)的最小正周期為π,且在[0,
π
6
]上為增函數(shù).
其中正確的結(jié)論有
 
(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
12
<φ<
π
2
),給出以下四個論斷:
①f(x)的周期為π; ②f(x)在區(qū)間(-
π
6
,0)上是增函數(shù);
③f(x)的圖象關(guān)于點(diǎn)(
π
3
,0)對稱;④f(x)的圖象關(guān)于直線x=
π
12
對稱.
以其中兩個論斷作為條件,另兩個論斷作為結(jié)論,寫出你認(rèn)為正確的一個命題:
 
 
(只需將命題的序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個單位長度,得到函數(shù)g(x)的圖象,求g (x)在區(qū)間[-
π
6
,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽一模)設(shè)函數(shù)f(x)=sin(2x+
π
3
)+2cos2
π
4
-x).
(1)求f(x)的最小正周期及對稱軸方程;
(2)設(shè)△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,若f(
C
2
)=
3
+1,c=
6
,cosB=
3
5
,求b.

查看答案和解析>>

同步練習(xí)冊答案