10.用0,1,2,3,4,5這6個數(shù)字可以組成多少個沒有重復(fù)的4位數(shù)?其中有多少個是2的倍數(shù)?

分析 首先排千位,不能為0,一共有5種排法;然后排百位,一共有5種排法;再排十位,有4種排法;最后再排個位,有3種排法,利用乘法原理可得結(jié)論.分類討論,利用乘法原理即可求解.

解答 解:首先排千位,不能為0,一共有5種排法;然后排百位,一共有5種排法;再排十位,有4種排法;最后再排個位,有3種排法,利用乘法原理可得,共有5×5×4×3=300(個)
末尾是0,有${A}_{5}^{3}$=60個;末尾是2,千位有4種排法;然后排百位,一共有4種排法;再排十位,有3種排法,共有4×4×3=48個;末尾是4,千位有4種排法;然后排百位,一共有4種排法;再排十位,有3種排法,共有4×4×3=48個,綜上共有60+48+48=156個2的倍數(shù);

點評 此題主要考查了排列問題的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是判斷出每個數(shù)位上各有多少種排法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合B={x∈Z|$\frac{6}{3-x}$∈N}.
(1)試判斷元素1,-1與集合B的關(guān)系;
(2)用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相同的單位長度,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=2sinθ.
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,點M為AB的中點,點P的極坐標(biāo)為$(\sqrt{2},\frac{π}{4})$,求|PM|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x|,則下列與函數(shù)y=f(x)相等的函數(shù)是(2)(4);
(1)g(x)=($\sqrt{x}$)2;(2)h(x)=$\sqrt{{x}^{2}}$;(3)s(x)=x;(4)y=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函數(shù)y=f(x)-m(m∈R)有四個零點x1,x2,x3,x4,則x1x2x3x4的取值范圍是( 。
A.(7,12)B.(12,15)C.(12,16)D.(15,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若x>2,求$\frac{{x}^{2}-4x+5}{x-2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)在(0,+∞)上是增函數(shù)的是(  )?
A.y=ln(x-2)B.y=-$\sqrt{x}$C.y=x2D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a為正實數(shù),函數(shù)f(x)=ax2-a2x-$\frac{1}{a}$的圖象與x軸交于A,B兩點,且A在B的左邊.
(1)解關(guān)于x不等式f(x)>f(1);
(2)求AB的最小值;
(3)如果a∈[1,2$\sqrt{2}$],求OA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+2,\;x≥0}\\{{x^2}-3x+2,\;x<0}\end{array}}$,則不等式f(2x-1)>f(1)的解集為(-∞,0)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案