精英家教網 > 高中數學 > 題目詳情
如圖,正方體ABCD-A1B1C1D1中,E、F、O分別是AA1,CC1,BD的中點,
(1)求異面直線D1E與BB1所成的角的余弦值;
(2)求證:BD⊥平面A1OF.

【答案】分析:(1)先將BB1平移到AA1,使兩條異面直線移到同一點,得到AA1與D1E所成角∠A1ED1等于D1E與BB1所成的角,最后在Rt△A1ED1中利用余弦定理求之即可.
(2)欲證BD⊥平面A1OF,連接A1B,A1D,OF,即要證:A1O⊥BD,及OF⊥BD,而A1O∩OF=O,由線面垂直的判定定理即得BD⊥平面A1OF.
解答:解:(1)設正方體的棱長為2
∵BB1∥AA1,∴AA1與D1E所成角∠A1ED1等于
D1E與BB1所成的角
在Rt△A1ED1中,
(2)連接A1B,A1D,OF,∵△A1AD≌△A1AB,∴A1D=A1B∴△A1BD是等腰三角形,
又∵O是BD的中點,∴A1O⊥BD
同理得OF⊥BD,而A1O∩OF=O
所以BD⊥平面A1OF.
點評:本題主要考查了異面直線及其所成的角、直線與平面垂直的判定,平移法是研究異面直線所成的角的最常用的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F分別為BB1和A1D1的中點.證明:向量
A1B
、
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案