等差數(shù)列{an}是遞減數(shù)列,且a2•a3•a4=48,a2+a3+a4=12,則數(shù)列{an}的通項公式是(  )
分析:設(shè)等差數(shù)列{an}的公差為d,由于等差數(shù)列{an}是遞減數(shù)列,可知d<0.利用a2+a3+a4=12,可得a3-d+a3+a3+d=12,解得a3.再利用a2•a3•a4=48,解得d.進而得出an
解答:解:設(shè)等差數(shù)列{an}的公差為d,∵等差數(shù)列{an}是遞減數(shù)列,∴d<0.
∵a2+a3+a4=12,∴a3-d+a3+a3+d=12,解得a3=4.
又a2•a3•a4=48,∴(4-d)×4×(4+d)=48,化為16-d2=12,又d<0,解得d=-2.
∴an=a3+(n-3)d=4-2(n-3)=10-2n.
故選A.
點評:本題考查了等差數(shù)列的通項公式及其性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

小正方形按照圖中的規(guī)律排列,每個圖形中的小正方形的個數(shù)構(gòu)成數(shù)列{an}有以下結(jié)論,

(1)a5=15   
(2){an}是一個等差數(shù)列; 
(3)數(shù)列{an}是一個等比數(shù)列;   
(4)數(shù)列{an}的遞推公式an+1=an+n+1(n∈N*
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

收集本地區(qū)教育儲蓄信息,有一公民的儲蓄方式為:第一年末存入a1元,以后每年末存入的數(shù)目均比上一年增加d(d>0)元,因此,歷年所存入的教育儲蓄金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列,與此同時,政府給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利,也不征利息稅.這就是說,如果固定年利率為p(p>0),那么,在第n年末,第一年所存入的儲蓄金就變?yōu)閍1(1+p)n-1,第二年所存入的儲蓄金就變?yōu)閍2(1+p)n-2,…,以Wn表示到第n年末所累計的儲蓄金總額.
(1)寫出Wn與Wn-1(n≥2)的遞推關(guān)系式;
(2)是否存在數(shù)列{An},{Bn}使Wn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某國采用養(yǎng)老儲備金制度,公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政府,不僅采用固定利率,而且計算復(fù)利.這就是說,如果固定年利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲備金就變成a2(1+r)n-2,….以Tn表示到第n年末所累計的儲備金總額.
(Ⅰ)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(Ⅱ)求證Tn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某國采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為a,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利.這就是說,如果固定年利率為r(r>0),那么,在第n年末,第l年所交納的儲備金就變?yōu)?span id="mkay35e" class="MathJye">a1(1+r)n-1,第2年所交納的儲備金就變?yōu)?span id="7trp051" class="MathJye">a2(1+r)n-2…以Tn表示到第n年末所累計的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列.

查看答案和解析>>

同步練習冊答案