如圖,模塊①~⑤均由4個(gè)棱長(zhǎng)為1的小正方體構(gòu)成,模塊⑥由15個(gè)棱長(zhǎng)為1的小正方體構(gòu)成.現(xiàn)從模塊①~⑤中選出三個(gè)放到模塊⑥上,使得模塊⑥成為一個(gè)棱長(zhǎng)為3的大正方體,則下列選擇方案中,能夠完成任務(wù)的為( )
A.模塊①,②,⑤ | B.模塊①,③,⑤ |
C.模塊②,④,⑤ | D.模塊③,④,⑤ |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
用反證法證明命題“若實(shí)系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)”時(shí),下列假設(shè)正確的是( )
A.假設(shè)都是偶數(shù) | B.假設(shè)都不是偶數(shù) |
C.假設(shè)至多有一個(gè)是偶數(shù) | D.假設(shè)至少有兩個(gè)是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
下面是一段演繹推理:
如果直線平行于平面,則這條直線平行于平面內(nèi)的所有直線;
已知直線平面,直線平面;
所以直線直線,在這個(gè)推理中( )
A.大前提正確,結(jié)論錯(cuò)誤 |
B.小前提與結(jié)論都是錯(cuò)誤的 |
C.大、小前提正確,只有結(jié)論錯(cuò)誤 |
D.大前提錯(cuò)誤,結(jié)論錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
(推理)三段論:“①只有船準(zhǔn)時(shí)起航,才能準(zhǔn)時(shí)到達(dá)目的港;②這艘船是準(zhǔn)時(shí)到達(dá)目的港;③所以這艘船是準(zhǔn)時(shí)起航的”中的“小前提”是( )
A.① | B.② | C.①② | D.③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若大前提是:任何實(shí)數(shù)的平方都大于0,小前提是:,結(jié)論是:,那么這個(gè)演繹推理出錯(cuò)在:( )
A.大前提 | B.小前提 |
C.推理過(guò)程 | D.沒(méi)有出錯(cuò) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為(n≥2),每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,則第10行第4個(gè)數(shù)(從左往右數(shù))為( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
某個(gè)命題與正整數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立,現(xiàn)已知n=5時(shí),該命題不成立,那么可以推得
A.n=6時(shí)該命題不成立 | B.n=6時(shí)該命題成立 |
C.n=4時(shí)該命題不成立 | D.n=4時(shí)該命題成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在證明命題“對(duì)于任意角θ,cos4θ-sin4θ=cos2θ”的過(guò)程:“cos4θ-sin4θ=(cos2θ+sin2θ)·(cos2θ-sin2θ)=cos2θ-sin2θ=cos2θ”中應(yīng)用了( )
A.分析法 |
B.綜合法 |
C.分析法和綜合法綜合使用 |
D.間接證法 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com