已知是函數(shù)的一個極值點,其中,
(I)求與的關(guān)系式;
(II)求的單調(diào)區(qū)間;
(III)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于3,求的取值范圍.
( I )解
因為是函數(shù)的一個極值點,所以,即,
所以
(II)由(I)知,=.
當(dāng)時,有,當(dāng)變化時,與的變化如下表:
|
|
|
| 1 |
|
| <0 | 0 | >0 | 0 | <0 |
| 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
由上表知,當(dāng)時,在單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減.
(III)解法一:
由已知,得,即
∵, ∴
即 (*)
設(shè),其函數(shù)圖象的開口向上,
由題意(*)式恒成立,∴
又
∴ .
即的取值范圍為
解法二:由已知,得,即,
∵, ∴ (*)
1* x=1時,(*)式化為0<1恒成立,∴。
2* x≠1時,∵∴
(*)式化為,
令t= x-1,則t∈[-2,0),記g(t)=t-,則g(t)在區(qū)間[-2,0)是單調(diào)增函數(shù)。
∴==
由(*)式恒成立,必有又m<0,
∴
綜上1*、2*知
科目:高中數(shù)學(xué) 來源:2014屆四川達州第一中學(xué)高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是函數(shù)的一個極值點,其中
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東師大附中高三12月(第三次)模擬檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知是函數(shù)的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當(dāng),時,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是函數(shù)的一個極值點,其中,
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
已知是函數(shù)的一個極值點,其中。
(Ⅰ)求與的關(guān)系表達式;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
已知是函數(shù)的一個極值點,其中,
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于3,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com