精英家教網 > 高中數學 > 題目詳情
(1+x)(1-
x
)6
展開式中x2項系數為
30
30
分析:由題意可得,展開式(1-
x
) 6
的通項Tr+1=
C
r
6
(-
x
) r
=(-1)r
C
r
6
x
r
2
,令r=2可得,T3=C62x,令r=4可得,T5=C64x2,分別與1,x相乘可求
解答:解:由題意可得,展開式(1-
x
) 6
的通項Tr+1=
C
r
6
(-
x
) r
=(-1)r
C
r
6
x
r
2

令r=2可得,T3=C62x
令r=4可得,T5=C64x2
∴當n=6時,展開式中x2項系數為,
1
2
n(n-1)+
C
4
n
=30
故答案為:30
點評:本題主要考查了二項展開式的通項的應用,解決此類問題的關鍵是根據多項式的乘法,判斷所要找的項在展開式中對應的項的特點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于定義在D上的函數y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數);
②對于D內任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數.
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數x的范圍;
(文)設f(x)是(1)中的“平底型”函數,若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數,求m和n滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=(x-1)2+1(x≤0)的反函數為(  )
A、f--1(x)=1-
x-1
(x≥1)
B、f--1(x)=1+
x-1
(x≥1)
C、f -1(x)=1-
x-1
(x≥2)
D、f -1(x)=1+
x-1
(x≥2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(
x
-1)=-x
,則函數f(x)的表達式為( 。
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log2(x+1),當點 (x,y) 是函數y=f (x) 圖象上的點時,點(
x
3
,  
y
2
)
是函數y=g(x) 圖象上的點.
(1)寫出函數y=g (x) 的表達式;
(2)當g(x)-f (x)≥0時,求x的取值范圍;
(3)當x在 (2)所給范圍內取值時,求g(x)-f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(
x
-1)=-x
,則函數f(x)的表達式為( 。
A.f(x)=x2+2x+1(x≥0)B.f(x)=x2+2x+1(x≥-1)
C.f(x)=-x2-2x-1(x≥0)D.f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步練習冊答案