已知,四棱錐P―ABCD的底面ABCD的邊長為1的正方形,PD⊥底面ABCD,且PD=1.

   (1)求證:BC//平面PAD;

   (2)若E、F分別為PB、PD的中點(diǎn),求證:EF⊥平面PBC;

   (3)求二面角B―PA―C的余弦值.

如圖,以點(diǎn)D為原點(diǎn)O,

                

有向直線OA、OC、OP分別為x,y,z軸建立空間直角坐標(biāo)系,

   (1)證明:因?yàn)锳BCD是正方形,

所以BC//AD.

因?yàn)锳D平面PAD,BC平面PAD,

所以BC//平面PAD.                                                                            

   (2)證明:因?yàn)?sub>

所以EF⊥平面PBC

(也可以證明平行于平面PBC的一個(gè)法向量)

(3)解:容易求出平面PAB的一個(gè)法向量為

及平面PAC的一個(gè)法向量為

因?yàn)?sub>,

所以

即所求二面角的余弦值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,O為AB中點(diǎn),AD∥BC,AB⊥BC,PA=PB=BC=AB=2,AD=3.
(Ⅰ)求證:CD⊥平面POC;
(Ⅱ)求二面角O-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F(xiàn)分別是AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC;
(2)求二面角P-EC-D的余弦值;
(3)求點(diǎn)B到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,且PA=AB=2,PC與底面ABCD所成角為450,PD的中點(diǎn)為E,F(xiàn)為AB上的動(dòng)點(diǎn).
(1)求三棱錐E-FCD的體積;
(2)當(dāng)點(diǎn)F為AB中點(diǎn)時(shí),試判斷AE與平面PCF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊二模)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點(diǎn)G使AG=
14
AP,求證:EG∥平面PFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在四棱錐P-ABCD,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段PA,BC的中點(diǎn).
(1)證明:BE∥平面PDF;
(2)證明:PF⊥FD;
(3)若PA=2,求直線PD與平面PAF所成的角.

查看答案和解析>>

同步練習(xí)冊答案