已知方程x2+y2+2(m+3)x-2(2m-1)y+5m2+2=0表示一個(gè)圓.
(1)求m的取值范圍;
(2)若m≥0,求該圓半徑r的取值范圍.
考點(diǎn):二元二次方程表示圓的條件
專題:直線與圓
分析:(1)利用方程表示圓的條件D2+E2-4F>0,建立不等式,即可求出實(shí)數(shù)m的取值范圍;
(2)利用圓的半徑r=
1
2
D2+E2-4F
,利用配方法結(jié)合(1)中實(shí)數(shù)m的取值范圍,即可求出該圓半徑r的取值范圍;
解答: 解:(1)∵方程x2+y2+2(m+3)x-2(2m-1)y+5m2+2=0表示圓,
∴D2+E2-4F=4(m+3)2+4(1-2m)2-4(5m2+2)=8m+32>0,
∴m>-4
(2)r=
1
2
D2+E2-4F
=
2m+8
,∵m≥0,
∴r≥2
2
點(diǎn)評(píng):本題考查圓的一般方程與圓的標(biāo)準(zhǔn)方程,考查解不等式,配方法求函數(shù)的最值,考查軌跡問(wèn)題,解題時(shí)確定圓的圓心與半徑是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
b
與向量
a
=(2,-1,2)共線,且滿足
a
b
=18,(k
a
+
b
)⊥(k
a
-
b
),求向量
b
及k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2+ax-2a2lnx(其中a為實(shí)數(shù)).
(1)若函數(shù)f(x)在x=1處取得極小值,求a的值;
(2)若對(duì)于任意的x∈(0,1],都有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足asinC=
3
ccosA,
AB
AC
=2.
(Ⅰ)求角A;
(Ⅱ)求△ABC的面積;
(Ⅲ)若b=1,求邊c與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知定點(diǎn)F(-1,0),N(1,0),以線段FN為對(duì)角線作周長(zhǎng)是8的平行四邊形MNEF.
(Ⅰ)求點(diǎn)E、M所在曲線C的方程;
(Ⅱ)過(guò)點(diǎn)N的直線l:x=my+1與曲線C交于P,Q兩點(diǎn),則△FPQ的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=0.70.7,b=30.3,c=(-
3
4
3,d=30.6,e=40.6,試比較a,b,c,d,e的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|y=
1
-x2+2x+3
},B={y|y=-x2+2x+3,x∈A},試求A∪B,A∩B,A∩(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的算法中,輸出的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案