已知函數(shù).
(1)當(dāng)時,設(shè).討論函數(shù)的單調(diào)性;
(2)證明當(dāng).
(1)當(dāng)時,在上是增函數(shù);
當(dāng)時,在上是減函數(shù),在上是增函數(shù).
(2)見解析.
解析試題分析:(1)求導(dǎo)數(shù),研究導(dǎo)函數(shù)值的正負(fù),確定單調(diào)區(qū)間.
由于,當(dāng)時,.
所以,討論當(dāng),即時,當(dāng),即時,即得結(jié)論;
(2)構(gòu)造函數(shù),由于導(dǎo)數(shù),通過確定函數(shù)的單調(diào)性及最值,達(dá)到解題目的.
由于,
所以令,再次利用導(dǎo)數(shù)加以研究,
當(dāng)時, 在上是減函數(shù),
當(dāng)時, 在上是增函數(shù),
又
得到當(dāng)時,恒有,即,
在上為減函數(shù),由,得證.
(1),所以. 2分
當(dāng)時,,故有:
當(dāng),即時,,;
當(dāng),即時,,
令,得;令,得, 5分
綜上,當(dāng)時,在上是增函數(shù);
當(dāng)時,在上是減函數(shù),在上是增函數(shù). 6分
(2)設(shè),則,
令,則, 8分
因為,所以當(dāng)時,;在上是減函數(shù),
當(dāng)時,,在上是增函數(shù),
又所以當(dāng)時,恒有,即,
所以在上為減函數(shù),所以,
即當(dāng)時,. &nb
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=alnx+bx2圖象上點P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數(shù)y=f(x)的解析式;
(2)函數(shù)g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有兩解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=,對?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時,求函數(shù) 的最小值;
(2)當(dāng) 時,求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實數(shù),對任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設(shè)a=2,求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)統(tǒng)計資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤日正品贏利額日廢品虧損額)
(1)將該車間日利潤(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com