(2012•貴陽模擬)設(shè)等差數(shù)列{an}的公差d為-2,前n項(xiàng)和為Sn,則
lim
n→∞
a
2
n
-n2
Sn
=
-3
-3
分析:通過等差數(shù)列求出通項(xiàng)公式與前n項(xiàng)和,利用數(shù)列的極限直接求解即可.
解答:解:因?yàn)榈炔顢?shù)列{an}的公差d為-2,前n項(xiàng)和為Sn,an=a1-2(n-1),
Sn=na1+
n(n-1)
2
×(-2)

lim
n→∞
a
2
n
-n2
Sn
=
lim
n→∞
(a1-2(n-1))2-n2
na1+
n(n-1)
2
×(-2)
=
lim
n→∞
3n2
-n2
=-3.
故答案為:-3.
點(diǎn)評(píng):本題考查數(shù)列的極限的求法,等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若對(duì)于任意實(shí)數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)直線x-2y+1=0關(guān)于直線x=3對(duì)稱的直線方程為
x+2y-7=0
x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
32
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若函數(shù)f(x)定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域?yàn)镽,g(x)恒大于0,且對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否為V形函數(shù),并說明理由;
(2)當(dāng)g(x)=x2+2時(shí),證明:g(x)是對(duì)數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿足對(duì)任意x∈R,有f(x)≥2,問f(x)是否為對(duì)數(shù)V形函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)若實(shí)數(shù)a、b、m滿足2a=5b=m,且
2
a
+
1
b
=2
,則m的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案