設數(shù)列{an}滿足…+2n-1an=(n∈N*),通項公式是( )
A.a(chǎn)n=
B.a(chǎn)n=
C.a(chǎn)n=
D.a(chǎn)n=
【答案】分析:設{2n-1•an}的前n項和為Tn,由數(shù)列{an}滿足…+2n-1an=(n∈N*),知,故2n-1an=Tn-Tn-1==,由此能求出通項公式.
解答:解:設{2n-1•an}的前n項和為Tn,
∵數(shù)列{an}滿足…+2n-1an=(n∈N*),
,
∴2n-1an=Tn-Tn-1==
=,
經(jīng)驗證,n=1時也成立,故
故選C.
點評:本題主要考查了數(shù)列遞推式以及數(shù)列的求和,同時考查了利用錯位相消法求數(shù)列的和,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=0,an+1=can3+1-c,n∈N*,其中c為實數(shù)
(1)證明:an∈[0,1]對任意n∈N*成立的充分必要條件是c∈[0,1];
(2)設0<c<
1
3
,證明:an≥1-(3c)n-1,n∈N*;
(3)設0<c<
1
3
,證明:
a
2
1
+
a
2
2
+…
a
2
n
>n+1-
2
1-3c
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
1
4x+m
(m>0)
,當x1、x2∈R且x1+x2=1時,總有f(x1)+f(x2)=
1
2

(1)求m的值;
(2)設數(shù)列an滿足an=f(
0
n
)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
,求an的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實數(shù),且c≠0
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項和Sn
(Ⅲ)若0<an<1對任意n∈N*成立,求實數(shù)c的范圍.(理科做,文科不做)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:a1=
5
6
,且an=
1
3
an-1+
1
3
(n∈N*,n≥2)
(1)求證:數(shù)列{an-
1
2
}為等比數(shù)列,并求數(shù)列{an}的通項an;
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n∈N*,不等式組
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域為Dn,把Dn內(nèi)的整點(橫、縱坐標均為整數(shù)的點)按其到原點的距離從近到遠排列成點列:(x1,y1),(x2,y2),…,(xn,yn
(1)求(xn,yn);
(2)設數(shù)列{an}滿足a1=x1,an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
),(n≥2)
,求證:n≥2時,
an+1
(n+1
)
2
 
-
an
n
2
 
=
1
n
2
 

(3)在(2)的條件下,比較(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
與4的大。

查看答案和解析>>

同步練習冊答案