(2013•樂山二模)如圖,已知拋物線y2=2px(p>0)的焦點(diǎn)F恰好是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn)F,則該雙曲線的離心率為( 。
分析:先根據(jù)拋物線方程及兩條曲線交點(diǎn)的連線過點(diǎn)F得到交點(diǎn)坐標(biāo),代入雙曲線,把
p
2
=c代入整理得 c4-6a2c2+a4=0等式兩邊同除以a4,得到關(guān)于離心率e的方程,進(jìn)而可求得e
解答:解:由題意,∵兩條曲線交點(diǎn)的連線過點(diǎn)F
∴兩條曲線交點(diǎn)為(
p
2
,p),
代入雙曲線方程得
p2
4
a2
-
p2
b2
=1,
p
2
=c
c2
a2
-4×
c2
b2
=1,化簡得 c4-6a2c2+a4=0
∴e4-6e2+1=0
∴e2=3+2
2
=(1+
2
2
∴e=
2
+1
故選C.
點(diǎn)評:本題的考點(diǎn)是拋物線的簡單性質(zhì),主要考查拋物線的應(yīng)用,考查雙曲線的離心率,解題的關(guān)鍵是得出a,c的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山二模)函數(shù)f(x)=Asin(ωx+?)(其中A>0,|?|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山二模)兩座燈塔A和B與海洋觀察站C的距離都等于aKm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為
3
a
3
a
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山二模)已知數(shù)列{an}有a1=a,a2=p(常數(shù)p>0),對任意的正整數(shù)n,Sn=a1+a2+…+an,并有Sn滿足Sn=
n(an-a1)
2

(I)試判斷數(shù)列{an}是否是等差數(shù)列,若是,求其通項公式,若不是,說明理由;
(II)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,Tn是數(shù)列{Pn}
的前n項和,求證:Tn-2n<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山二模)已知f(x)=-
4+
1
x2
,點(diǎn)Pn(an,-
1
an+1
)
在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求證:數(shù)列{
1
a
2
n
}
為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{
a
2
n
a
2
n+1
}
的前n項和為Sn,若對于任意的n∈N*,存在正整數(shù)t,使得Snt2-t-
1
2
恒成立,求最小正整數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊答案