【題目】已知正項(xiàng)等比數(shù)列{an}滿足a1 , 2a2 , a3+6成等差數(shù)列,且a42=9a1a5 ,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=( an+1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q>0,∵a1,2a2,a3+6成等差數(shù)列,∴2×2a2=a3+6+a1,又a42=9a1a5,
∴ ,解得a1=q=3.
∴an=3n.
(2)解:bn=( an+1)an=(2n+1)3n.
∴數(shù)列{bn}的前n項(xiàng)和Tn=3×3+5×32+…+(2n+1)3n.
3Tn=3×32+5×33+…+(2n﹣1)3n+(2n+1)3n+1,
∴﹣2Tn=32+2×(32+33+…+3n)﹣(2n+1)3n+1= +3﹣(2n+1)3n+1=﹣2n3n+1,
∴Tn=n3n+1.
【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.(2)bn=( an+1)an=(2n+1)3n . 再利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研課題組通過(guò)一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛(ài)好者平均每周的跑步量(簡(jiǎn)稱(chēng)“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補(bǔ)全該市1000名跑步愛(ài)好者周跑量的頻率分布直方圖:
注:請(qǐng)先用鉛筆畫(huà),確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計(jì)算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計(jì)該市跑步愛(ài)好者周跑量的分布特點(diǎn)
(3)根據(jù)跑步愛(ài)好者的周跑量,將跑步愛(ài)好者分成以下三類(lèi),不同類(lèi)別的跑者購(gòu)買(mǎi)的裝備的價(jià)格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類(lèi)別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價(jià)格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計(jì)該市每位跑步愛(ài)好者購(gòu)買(mǎi)裝備,平均需要花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對(duì)稱(chēng)軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請(qǐng)說(shuō)出平移的方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面, , , , 分別為線段上的點(diǎn),且, , .
(1)求證: 平面;
(2)若與平面所成的角為,求平面與平面所成的銳二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, 已知圓 ,橢圓 ,為橢圓右頂點(diǎn).過(guò)原點(diǎn)且異于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),直線與圓的另一交點(diǎn)為,直線與圓的另一交點(diǎn)為,其中.設(shè)直線的斜率分別為.
(1)求的值;
(2)記直線的斜率分別為,是否存在常數(shù),使得?若存在,求值;若不存在,說(shuō)明理由;
(3)求證:直線必過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二項(xiàng)式的展開(kāi)式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,且展開(kāi)式中的第3項(xiàng)的系數(shù)是第4項(xiàng)的系數(shù)的3倍,則的值為( )
A. 4 B. 8 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左右焦點(diǎn)分別為,與軸正半軸交于點(diǎn),若為等腰直角三角形,且直線被圓所截得的弦長(zhǎng)為2.
(1)求橢圓的方程;
(2)直線:與橢圓交于點(diǎn),線段的中點(diǎn)為,射線與橢圓交于點(diǎn),點(diǎn)為的重心,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)為某一個(gè)三角形的邊長(zhǎng),則實(shí)數(shù)m的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com