(1)g(x)=lnx+
,
=
(1’)
當(dāng)k
0時,
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時,
>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x="e," 當(dāng)x變化時,h(x),
的變化情況如表
x
| 1
| (1,e)
| e
| (e,+)
|
|
| -
| 0
| +
|
h(x)
| e-2
| ↘
| 0
| ↗
|
所以h(x)
0, ∴f(x)
2x-e (5’)
設(shè)G(x)=lnx-
(x
1)
=
=
0,當(dāng)且僅當(dāng)x=1時,
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)="0," 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當(dāng)x
1時, 2x-e
f(x)
恒成立.
(3) ∵
=lnx+1∴l(xiāng)nx
0+1=
=
∴l(xiāng)nx
0=
-1
∴l(xiāng)nx
0–lnx
=
-1–lnx
=
=
=
(10’)
設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵
∴
=
∴l(xiāng)nx0 –lnx
>0, ∴x
0>x