{an}是等比數(shù)列,其中a3,a7是關(guān)x的方程數(shù)學(xué)公式的兩根,且(a3+a72=2a2a8+6,則銳角α的值為________.

60°
分析:先利用韋達(dá)定理,再結(jié)合{an}是等比數(shù)列,(a3+a72=2a2a8+6,即可求得結(jié)論.
解答:∵a3,a7是關(guān)x的方程的兩根,
∴a3+a7=2sinα,a3a7=-sinα
∵{an}是等比數(shù)列,(a3+a72=2a2a8+6,
∴(2sinα)2=2×(-sinα)+6,
∴2sin2α+sinα-3=0
∴sinα=
∴銳角α的值為60°
故答案為:60°
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n+1+λ-1,若{an}是等比數(shù)列,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)之和Sn滿足關(guān)系式:3tSn+1-(2t+3)Sn=3t(t>0,n∈N*).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足bn+1=f(
1bn
),(n∈N*)
,且b1=1.
(i)求數(shù)列{bn}的通項(xiàng)bn;
(ii)設(shè)Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn.且滿足Sn=2an-1(n∈N+
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)數(shù)列{bn}滿足bn+1.=an+bnn∈N+.且b1=3.若不等式log2(bn-2)
316
n2+t
對(duì)任意n∈N+恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a4•a5•a6•a7•a8•a9•a10=128,則a15
a2a10
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logkx(k為常數(shù),k>0且k≠1),且數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若bn=an•f(an),當(dāng)k=
2
時(shí),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案