40、某人射擊一次命中7~10環(huán)的概率如下表
命中環(huán)數(shù) 7 8 9 10
命中概率 0.16 0.19 0.28 0.24
計算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.
分析:某人射擊一次命中7環(huán)、8環(huán)、9環(huán)、10環(huán)的事件分別記為A、B、C、D,則可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24
(1)事件D或C有一個發(fā)生,根據(jù)互斥事件的概率公式可得
(2)事件A、B、C、D有一個發(fā)生,據(jù)互斥事件的概率公式可得
(3)考慮“射中環(huán)數(shù)不足8環(huán)“的對立事件:利用對立事件的概率公式P(M)=1-P($\overline{M}$)求解即可
解答:解:某人射擊一次命中7環(huán)、8環(huán)、9環(huán)、10環(huán)的事件分別記為A、B、C、D
則可得P(A)=0.16,P(B)=0.19,P(C)=0.28,P(D)=0.24
(1)射中10環(huán)或9環(huán)即為事件D或C有一個發(fā)生,根據(jù)互斥事件的概率公式可得
P(C+D)=P(C)+P(D)=0.28+0.24=0.52
答:射中10環(huán)或9環(huán)的概率0.52
(2)至少射中7環(huán)即為事件A、B、C、D有一個發(fā)生,據(jù)互斥事件的概率公式可得
P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.16+0.19+0.28+0.24=0.87
答:至少射中7環(huán)的概率0.87
(3)射中環(huán)數(shù)不足8環(huán),P=1-P(B+C+D)=1-0.71=0.29
答:射中環(huán)數(shù)不足8環(huán)的概率0.29
點評:本題考查了互斥事件有一個發(fā)生的概率公式的應(yīng)用,若A,B互斥,則P(A+B)=P(A)+P(B),當(dāng)一個事件的正面情況比較多或正面情況難確定時,常考慮對立事件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人射擊一次命中7~10環(huán)的概率如下表
命中環(huán)數(shù)78910
命中概率0.160.190.280.24
計算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人射擊一次命中7~10環(huán)的概率如下表
命中環(huán)數(shù) 7 8 9 10
命中概率 0.16 0.19 0.28 0.24
計算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某人射擊一次命中7~10環(huán)的概率如下表

命中環(huán)數(shù)

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

計算這名射手在一次 射擊中:

(1)射中9環(huán)或10環(huán)的概率;

(2)至少射中7環(huán)的概率;

(3)射中環(huán)數(shù)不足8環(huán)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省梅州市興寧市濟平中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某人射擊一次命中7~10環(huán)的概率如下表
命中環(huán)數(shù)78910
命中概率0.160.190.280.24
計算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

同步練習(xí)冊答案