已知函數(shù)為R上的奇函數(shù)
(1)求a的值
(2)求函數(shù)的值域
(3)判斷函數(shù)的單調(diào)區(qū)間并證明.
【答案】分析:(1)根據(jù)f(x)為奇函數(shù),利用定義得出f(-x)=-f(x),從而求得a值即可;
(2)由(1)知 ,利用指數(shù)函數(shù)2x的性質(zhì)結(jié)合不等式的性質(zhì)即可求得f(x)的值域.
(3)先設(shè)x1<x2,欲證明不論a為何實(shí)數(shù)f(x)總是為增函數(shù),只須證明:f(x1)-f(x2)<0,即可;
解答:解:(1)∵f(x)為奇函數(shù),∴f(-x)=-f(x),
,
解得:a=1.

(2)由(1)知 (4),
∵2x+1>1,
,
,∴-1<f(x)<1
所以函數(shù)的值域?yàn)?(-1,1).
(3)∵f(x)的定義域?yàn)镽,設(shè)x1<x2,
=,
∵x1<x2,∴,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不論a為何實(shí)數(shù)f(x)總為增函數(shù).
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當(dāng)x=1時(shí),有極小值-1;函g(x)=-
1
2
x3+
3
2
x+t-
3
t
(t∈R,t≠0)

(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西師大附中高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當(dāng)x=1時(shí),有極小值-1;函
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年浙江省寧波市十校高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當(dāng)x=1時(shí),有極小值-1;函
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波模擬 題型:解答題

已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當(dāng)x=1時(shí),有極小值-1;函g(x)=-
1
2
x3+
3
2
x+t-
3
t
(t∈R,t≠0)

(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案