(本小題共14分)
在單調(diào)遞增數(shù)列中,,不等式對(duì)任意都成立.
(Ⅰ)求的取值范圍;
(Ⅱ)判斷數(shù)列能否為等比數(shù)列?說明理由;
(Ⅲ)設(shè),,求證:對(duì)任意的,.
(1) (2) 用反證法證明:假設(shè)數(shù)列是公比為的等比數(shù)列, 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image002.png">單調(diào)遞增,所以.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image005.png">,都成立,從而加以證明。
(3)通過前幾項(xiàng)歸納猜想,然后運(yùn)用數(shù)學(xué)歸納法加以證明。
【解析】
試題分析:(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image002.png">是單調(diào)遞增數(shù)列,
所以,.
令,,,
所以. ………………4分
(Ⅱ)證明:數(shù)列不能為等比數(shù)列.
用反證法證明:
假設(shè)數(shù)列是公比為的等比數(shù)列,,.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image002.png">單調(diào)遞增,所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image005.png">,都成立.
所以, ①
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image004.png">,所以,使得當(dāng)時(shí),.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image022.png">.
所以,當(dāng)時(shí),,與①矛盾,故假設(shè)不成立.………9分
(Ⅲ)證明:觀察: ,,,…,猜想:.
用數(shù)學(xué)歸納法證明:
(1)當(dāng)時(shí),成立;
(2)假設(shè)當(dāng)時(shí),成立;
當(dāng)時(shí),
所以.
根據(jù)(1)(2)可知,對(duì)任意,都有,即.
由已知得,.
所以.
所以當(dāng)時(shí),.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image054.png">.
所以對(duì)任意,.
對(duì)任意,存在,使得,
因?yàn)閿?shù)列{}單調(diào)遞增,
所以,.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050709205178733869/SYS201305070921220217863450_DA.files/image045.png">,
所以. ………………14分
考點(diǎn):數(shù)列的性質(zhì)
點(diǎn)評(píng):解決數(shù)列的單調(diào)性問題,要根據(jù)定義法來說明,同時(shí)要對(duì)于正面證明比較難的試題,要正難則反,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
數(shù)列的前n項(xiàng)和為,點(diǎn)在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和
(III)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體的棱長(zhǎng)為,是與的交點(diǎn),為的中點(diǎn).
(Ⅰ)求證:直線∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com