已知復數(shù)z滿足(3+4i)z=25,則z=(  )
A、3-4iB、3+4iC、-3-4iD、-3+4i
考點:復數(shù)相等的充要條件
專題:數(shù)系的擴充和復數(shù)
分析:根據(jù)題意利用兩個復數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),計算求得z的值.
解答:解:∵復數(shù)z滿足(3+4i)z=25,則z=
25
3+4i
=
25(3-4i)
(3+4i)(3-4i)
=
25(3-4i)
25
=3-4i,
故選:A.
點評:本題主要考查兩個復數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l⊥平面α,且l不在平面β內(nèi),則“α⊥β”是“l(fā)∥β”的(  )
A、充分不必要條件B、必要不充分條件C、充要條件D、既不是充分條件,也不是必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
1
4
x4-
4
3
x3+2x2+a在x=x1處取得極值2,則
1
0
a2-t2
dt=( 。
A、π+
3
2
B、π
C、
1
3
π+
3
2
D、
π
3
+
3
2
1
9
π+
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學課程之間的關系,在我市某普通中學高中生中隨機抽取200名學生,得到如下2×2列聯(lián)表:
喜歡數(shù)學課 不喜歡數(shù)學課 合計
30 60 90
20 90 110
合計 50 150 200
(1)根據(jù)獨立性檢驗的基本思想,約有多大的把握認為“性別與喜歡數(shù)學課之間有關系”?
(2)若采用分層抽樣的方法從喜歡數(shù)學課的學生中隨機抽取5人,則男生和女生抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從中隨機抽取2人,求恰有一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)滿足:集合A={f(n)|n∈N*}中至少有三個不同的數(shù)成等差數(shù)列,則稱函數(shù)f(x)是“等差源函數(shù)”,則下列四個函數(shù)中,“等差源函數(shù)”的個數(shù)是( 。
①y=2x+1;
②y=log2x;
③y=2x+1;
④y=sin(
π
4
x+
π
4
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=sinθ-
3
5
+(cosθ-
4
5
)i(i是虛數(shù)單位)是純虛數(shù),則tanθ值為( 。
A、-
3
4
B、-
4
3
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù)單位,復數(shù)z=1+i的模為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在航天員進行的一項太空實驗中,先后要實施6個程序,其中程序B和C都不與D相鄰,則實驗順序的編排方法共有(  )
A、216種B、288種C、180種D、144種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
a
0
1
b
把點(1,1)變換成點(2,2)
(Ⅰ)求a,b的值
(Ⅱ)求曲線C:x2+y2=1在矩陣A的變換作用下對應的曲線方程.

查看答案和解析>>

同步練習冊答案