已知向量m=(sin
x
4
,cos
x
4
),n=(
3
cos
x
4
,cos
x
4
),記f(x)=m•n;
(1)若f(x)=1,求cos(x+
π
3
)
的值;
(2)若△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函
數(shù)f(A)的取值范圍.
分析:(1)先根據(jù)兩角和與差的正弦公式將函數(shù)f(x)化簡(jiǎn)為y=Asin(wx+ρ)+b的形式,根據(jù)f(x)=1求出sin(
x
2
+
π
6
),再由二倍角公式求出答案.
(2)先根據(jù)正弦定理將邊的關(guān)系轉(zhuǎn)化為角的正弦的關(guān)系,再由誘導(dǎo)公式求出cosB得到角B的值,從而可確定角A的范圍,再求出
A
2
+
π
6
范圍,得到f(A)的取值范圍.
解答:解:(1)f(x)=m•n=
3
sin
x
4
cos
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
2
+
1
2
=sin(
x
2
+
π
6
)+
1
2
,
∵f(x)=1,∴sin(
x
2
+
π
6
)=
1
2
,
∴cos(x+
π
3
)=1-2sin2(
x
2
+
π
6
)
=
1
2

(2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C),
∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=
1
2
,B=
π
3
;
∴0<A<
3
,∴
π
6
A
2
+
π
6
π
2
,
1
2
<sin(
A
2
+
π
6
)<1

π
6
A
2
+
π
6
π
2
,
1
2
<sin (
A
2
+
π
6
)<1

又∵f(x)=sin(
x
2
+
π
6
)+
1
2
,∴f(A)=sin(
A
2
+
π
6
)+
1
2

故函數(shù)f(A)的取值范圍是(1,
3
2
).
點(diǎn)評(píng):本題主要考查兩角和與差的正弦公式和正弦定理的應(yīng)用.向量和三角函數(shù)的綜合題是高考的熱點(diǎn)問題,每年必考,要給予充分的重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2

(Ⅰ)當(dāng)θ∈[0,π]時(shí),求函數(shù)f(θ)=
m
×
n
的值域;
(Ⅱ)若
m
n
,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對(duì)的角.
(Ⅰ)求角C的大;
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量m=(sinωx,cosωx),n=(cosωx,
3
cosωx)且0<ω<2,函數(shù)f(x)=m•n,且f(
π
3
)=
3
2

(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=g(x)的圖象向右平移
π
3
個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的
1
4
,得到函數(shù)y=f(x)的圖象,求函數(shù)g(x)的解析式及其在[-
π
3
,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinωx,1),
n
=(
3
Acos
ωx,
A
2
cos2
ωx)(A>0,ω>0),函數(shù)f(x)=
m
n
的最大值為3,且其圖象相鄰兩條對(duì)稱軸之間的距離為π.
(I)求函數(shù)f(x)的解析式;
(II)將函數(shù)y=f(x)的圖象向左平移
π
6
個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)g(x)在[
π
4
,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量m=(cosθ,sinθ),n=(-sinθ,cosθ),θ∈(π,2π),且|m+n|=,求cos(+)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案