“m=3”是“直線mx+2y+3m=0和直線3x+(m-1)y-m+7=0不重合而平行”的(  )
分析:兩條直線平行,A1B2-A2B1=0,且A1C2-A2C1≠0,求出充要條件,再判斷即可.
解答:解:由兩直線平行的充要條件可得A1B2-A2B1=0…(1),且A1C2-A2C1≠0…(2),
代入(1)得:m(m-1)-6=0
解得m=3或-2,但m=-2不適合(2),
從而直線mx+2y+3m=0和直線3x+(m-1)y-m+7=0平行且不重合的充要條件是m=3.
故選C.
點評:本題考查必要條件、充分條件與充要條件的判斷、兩條直線平行的判定,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下面四個命題:
①m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
②m,n是平面α內(nèi)的兩條直線,直線l在平面α外,則l⊥α是l⊥m且l⊥n的充分不必要條件;
③函數(shù)a=b=0是f(x)=x2+b|x-a|為偶函數(shù)的必要非充分條件;
b=
ac
是a,b,c
三個數(shù)成等比數(shù)列的既不充分又非必要條件;
其中真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面四個命題:
①m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
②b=
ac
是a,b,c三個數(shù)成等比數(shù)列的既不充分又非必要條件;
③p、q為簡單命題,則“p且q為假命題”是“p或q為假命題”的必要不充分條件;
④兩個向量相等是這兩個向量共線的充分非必要條件.
其中真命題的序號是
②③④
②③④
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)“數(shù)列{an}為等比數(shù)列”是“數(shù)列{anan+1}為等比數(shù)列”的充分不必要條件;
(2)“a=2”是“函數(shù)f(x)=|x-a|在區(qū)間[2,+∞)為增函數(shù)”的充要條件;
(3)“m=3”是“直線(m+3)x+my-2=0與直線mx-6y+5=0相互垂直”的充要條件;
(4)設(shè)a,b,c分別是△ABC三個內(nèi)角A,B,C所對的邊,若a=1.b=
3
,則“A=30°”是“B=60°”的必要不充分條件.
其中真命題的序號是
(1)(4)
(1)(4)
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題中正確命題的個數(shù)是( 。
(1)對于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4

(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

同步練習(xí)冊答案