已知角α是第二象限角,其終邊上一點P的坐標是(-
2
,y)
,且sinα=
2
4
y.
(1)求tanα的值;
(2)求
3sinα•cosα
4sin2α+2cos2α
的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)由條件利用任意角的三角函數(shù)的定義求得y的值,可得tanα=
y
-
2
 的值.
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得所給式子的值.
解答: 解:(1)由題意可得y>0,且sinα=
y
2+y2
=
2
4
y,求得y=
6

∴tanα=
y
-
2
=-
3

(2)
3sinα•cosα
4sin2α+2cos2α
=
3tanα
4tan2α+2
=
-3
3
4×3+2
=-
3
3
14
點評:本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=tanx(x∈{x|x≠
π
2
+kπ,k∈Z}的圖象上所有點向左平行移動
π
3
個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),得到的圖象所表示的函數(shù)解析式是( 。
A、y=tan(2x-
π
3
B、y=tan(
x
2
+
π
6
C、y=tan(2x+
π
3
D、y=tan(2x+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}各項均不為0,且滿足關(guān)系式an=
3an-1
an-1+3
(n≥2).
(1)求證數(shù)列{
1
an
}
為等差數(shù)列;
(2)當a1=
1
2
時,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+
2-3a
2
x2
+bx(a,b為常數(shù))
(1)若y=f(x)的圖象在x=2處的切線方程為x-y+6=0,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=f(x)的圖象與y=-
1
2
[f′(x)-9x-3]+m的圖象交點的個數(shù);
(3)當a=1時,?x∈(0,+∞),lnx≤f'(x)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若(4
AB
-
AC
)⊥
CB
,則sinA的最大值為( 。
A、
1
2
B、
3
5
C、
4
5
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=xe2x-1在點(1,e)處切線的斜率等于( 。
A、2eB、eC、3eD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x0)=A,則
lim
△x→0
f(x0-△x)-f(x0)
△x
等于( 。
A、A
B、-A
C、
1
2
A
D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、異面直線a,b不垂直,則不存在互相垂直的平面α,β分別過a,b
B、直線l不垂直平面α,則α內(nèi)不存在與l垂直的直線
C、直線l與平面α平行,則過α內(nèi)一點有且只有一條直線與l平行
D、平面α,β垂直,則過α內(nèi)一點有無數(shù)條直線與β垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是兩個非零向量,則“
a
b
的夾角為鈍角”是“
a
b
<0
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案