已知數(shù)列{an}中,a1=2,n∈N*,an>0,數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=.
(1)求{Sn}的通項(xiàng)公式;
(2)設(shè){bk}是{Sn}中的按從小到大順序組成的整數(shù)數(shù)列.
①求b3;
②存在N(N∈N*),當(dāng)n≤N時,使得在{Sn}中,數(shù)列{bk}有且只有20項(xiàng),求N的范圍.
(1)Sn=1+(2)①6②N∈[761,840]
【解析】(1)an+1=Sn+1-Sn,
∴(Sn+1-Sn)(Sn+1+Sn-2)=2;即(Sn+1)2-(Sn)2-2(Sn+1-Sn)=2,
∴(Sn+1-1)2-(Sn-1)2=2,且(S1-1)2=1,∴{(Sn-1)2}是首項(xiàng)為1,公差為2的等差數(shù)列,
∴Sn=1+.
(2)①n=1時,S1=1+1=2=b1,n=5時,S5=1+3=4=b2,n=13時,S13=1+5=6=b3.
②∵2n-1是奇數(shù),Sn=1+為有理數(shù),則=2k-1,
∴n=2k2-2k+1,當(dāng)k=20時,n=761;當(dāng)k=21時,n=841;
∴存在N∈[761,840],當(dāng)n≤N時,使得在{Sn}中,數(shù)列{bk}有且只有20項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時練習(xí)卷(解析版) 題型:解答題
如圖,在四棱錐PABCD中,M、N分別是側(cè)棱PA和底面BC邊的中點(diǎn),O是底面平行四邊形ABCD的對角線AC的中點(diǎn).求證:過O、M、N三點(diǎn)的平面與側(cè)面PCD平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時練習(xí)卷(解析版) 題型:填空題
過直線l外一點(diǎn)P,作與l平行的平面,則這樣的平面有________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時練習(xí)卷(解析版) 題型:填空題
有下列命題:①空間四點(diǎn)共面,則其中必有三點(diǎn)共線;②空間四點(diǎn)不共面,則其中任何三點(diǎn)不共線;③空間四點(diǎn)中有三點(diǎn)共線,則此四點(diǎn)共面;④空間四點(diǎn)中任何三點(diǎn)不共線,則此四點(diǎn)不共面.其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時練習(xí)卷(解析版) 題型:填空題
等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S10=0,S15=25,則nSn的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時練習(xí)卷(解析版) 題型:填空題
設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等
比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)都成立.
(1)求a1,a2的值;
(2)設(shè)a1>0,數(shù)列前n項(xiàng)和為Tn,當(dāng)n為何值時,Tn最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時練習(xí)卷(解析版) 題型:解答題
在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{anbn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時練習(xí)卷(解析版) 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=,則數(shù)列{bn}的最小項(xiàng)是第幾項(xiàng),并求該項(xiàng)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com