如果a
1
2
=b
(a>0,且a≠1),則(  )
A、log
 
1
2
a
=b
B、log
 
b
a
=
1
2
C、log 
1
2
b=a
D、log 
1
2
a=b
考點(diǎn):指數(shù)式與對(duì)數(shù)式的互化
專題:常規(guī)題型
分析:根據(jù)對(duì)數(shù)的定義ax=N?x=logaN,由指數(shù)形式轉(zhuǎn)化為對(duì)數(shù)形式.
解答: 解:根據(jù)對(duì)數(shù)的定義ax=N?x=logaN,
所以a
1
2
=b
?
1
2
=logab
,
故選B.
點(diǎn)評(píng):考察指對(duì)互化,掌握定義ax=N?x=logaN,莫混淆!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線mx+3y-4=0與圓(x+2)2+y2=5相交于A、B兩點(diǎn),若|AB|=2,則實(shí)數(shù)m的值為(  )
A、
5
2
B、0或-
5
4
C、±
5
2
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)和g(x)滿足g(x)≠0,f'(x)•g(x)>f(x)•g'(x),f(x)=ax•g(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項(xiàng)和Sn超過(guò)100的最小自然數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意實(shí)數(shù)x,都有f(x+1)=f(x-1)成立.已知當(dāng)x∈[1,2]時(shí),f(x)=logax.
(1)求x∈[-1,1]時(shí),函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的最大值為
1
2
,在區(qū)間[-1,3]上,解關(guān)于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>0,p:(x+2)(x-3)≤0,q:1-m≤x≤1+m.
(I)若¬q是¬p的必要條件,求實(shí)數(shù)m的取值范圍;
(II)若m=7,“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意x,y∈R,滿足f(x)+f(y)=f(x+y)+2,當(dāng)x>0時(shí),f(x)>2.
(1)求證:f(x)在R上是增函數(shù);
(2)當(dāng)f(3)=5時(shí),解不等式:f(a2-2a-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集I=Z,集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},則有( 。
A、I=(CIA)∪B
B、I=(CIB)∪B
C、I=(CIA)∪(CIB)
D、I=A∪B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由直線y=x-3上的點(diǎn)向圓(x+2)2+(y-3)2=1引切線,則切線長(zhǎng)的最小值為(  )
A、
31
B、4
2
C、
33
D、
29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin3xcosx+cos3xsinx+
3
sin2x

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)已知△ABC的三邊a、b、c對(duì)應(yīng)角為A、B、C,且三角形的面積為S,若
3
2
AB
BC
=S,求f(A)
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案