四棱錐底面是菱形,,分別是的中點.

(1)求證:平面⊥平面;
(2)上的動點,與平面所成的最大角為,求二面角的正切值.
(1)參考解析;(2)

試題分析:(1)由已知可得直線AE垂直于BC,即可得到AE垂直于AD,又因為PA垂直于AE.所以可得AE垂直于平面PAD.即可得平面要證平面⊥平面.
(2)通過點E作EG垂直于AF,EQ垂直于AC,連結(jié)QG即可證得為所求的二面角的平面角.由與平面所成的最大角為.可得AE=AH.即可得EQ,QG的大小.從求得的正切值,即二面角 的正切值.
(1)設(shè)菱形ABCD的邊長為2a,則AE=
,∴AE⊥BC,又AD||BC, ∴AE⊥AD.∵PA⊥面ABCD, ∴PA⊥AE,AE⊥面PAD, ∴面AEF⊥面PAD.
(2)過E作EQ⊥AC,垂足為Q,過作QG⊥AF,垂足為G,連GE,∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,則∠EGQ是二面角E-AF-C的平面角.
過點A作AH⊥PD,連接EH,∵ AE⊥面PAD,∴∠AHE是EH與面PAD所成的最大角.
∵∠AHE=,∴AH=AE=,AH﹒PD=PA﹒AD,2a﹒PA=,PA=2,PC=4a,EQ=,CQ=,GQ=,tan∠EGQ=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體中,
(1)若點在對角線上移動,求證:;
(2)當為棱中點時,求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,底面,的中點, 的中點,,.

(1)求證:平面;
(2)求與平面成角的正弦值;
(3)設(shè)點在線段上,且,平面,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐,底面為菱形,
平面,分別是的中點.
(1)證明:;
(2)若上的動點,與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體中,已知為棱上的動點.

(1)求證:;
(2)當為棱的中點時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面α⊥平面β,α∩β=l,點A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面α∥平面β的一個充分條件是( 。
A.存在一條直線a,a∥α,a∥β
B.存在一條直線a,a?α,a∥β
C.存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α
D.存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個正方體圖形中,、為正方體的兩個頂點,、、分別為其所在棱的中點,能得出平面的圖形的序號是(     )
A.①、③B.①、④C.②、③ D.②、④

查看答案和解析>>

同步練習(xí)冊答案