6.已知函數(shù)y=$\frac{x+2}{3x-4}$.
(1)求x的取值范圍;
(2)求y的取值范圍.

分析 (1)根據(jù)函數(shù)有意義,分母不能為零,即可得到的取值范圍
(2)采用分離常數(shù)法,根據(jù)定義域范圍求解值域.

解答 解:(1)∵函數(shù)y=$\frac{x+2}{3x-4}$.
∴3x-4≠0
解得:$x≠\frac{4}{3}$
故x的取值范圍是{x∈R|$x≠\frac{4}{3}$}.
(2)函數(shù)y=$\frac{x+2}{3x-4}$
化簡成:y=$\frac{\frac{1}{3}(3x-4)+\frac{4}{3}+2}{3x-4}$=$\frac{\frac{1}{3}(3x-4)+\frac{10}{3}}{3x-4}$=$\frac{1}{3}+\frac{10}{9x-12}$
∵$\frac{10}{9x-12}≠0$
∴y≠$\frac{1}{3}$
故y的取值范圍是{y∈R|$y≠\frac{1}{3}$}.

點評 本題考查了函數(shù)的定義域和值域的求法,分離常數(shù)法是求值域的方法之一,必須熟悉并且要靈活運用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{2}{5}$$\overrightarrow{OB}$,AD與BC交于點M,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.在線段AC上取一點E,在線段BD上取一點F,使EF過點M,設(shè)$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$.
(1)用$\vec a,\vec b$向量表示$\overrightarrow{OM}$
(2 )求證:$\frac{1}{6p}$+$\frac{1}{3q}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.周立波是海派清口創(chuàng)始人和《壹周•立波秀》節(jié)目的主持人,他的點評視角獨特,語言幽默犀利,給觀眾留下了深刻的印象.某機構(gòu)為了了解觀眾對《壹周•立波秀》節(jié)目的喜愛程度,隨機調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)
總計
喜愛4060100
不喜愛202040
總計6080140
(Ⅰ)從這60名男觀眾中按對《壹周•立波秀》節(jié)目是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025的前提下認為觀眾性別與喜愛《壹周•立波秀》節(jié)目有關(guān).(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛《壹周•立波秀》節(jié)目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=2x+1,x∈R且f(x)可表示為一個偶函數(shù)g(x)與一個奇函數(shù)h(x)的和,設(shè)h(x)=t,p(t)=g(2x)+2mh(x)+m2-m+1,m∈R.
(1)求P(t)的解析式;
(2)若p(t)≥m2-m+1對于x∈[1,2]恒成立,求m的取值范圍;
(3)當P(P(t))=0無實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=$\frac{1}{2}$CP=2,D是CP的中點,將△PAD沿AD折起,使得PD⊥面ABCD.

(1)求證:平面PAD⊥平面PCD;
(2)若E是PC的中點,求三棱錐D-PEB的體積.
(3)若E在CP上且二面角E-BD-C所成的角為45°,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)的圖象經(jīng)過點(1,λ),且對任意x∈R,都有f(x+1)=f(x)+2.數(shù)列{an}滿足a1=λ-2,an+1=$\left\{\begin{array}{l}{2^n},n為奇數(shù)\\ f({a_n}),n為偶數(shù)\end{array}$.
(Ⅰ)當x為正整數(shù)時,求f(n)的表達式;
(Ⅱ)設(shè)λ=3,求an
(Ⅲ)若對任意n∈N*,總有anan+1<an+1an+2,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a1=5,an=2an-1+3(n≥2),則a6=253.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=2x-2-x,a=(${\frac{7}{9}}$)${\;}^{\frac{1}{2}}}$,b=(${\frac{9}{7}}$)${\;}^{\frac{1}{2}}}$,c=log2$\frac{7}{9}$,則f(a),f(b),f(c)的大小順序為( 。
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

同步練習(xí)冊答案