精英家教網 > 高中數學 > 題目詳情

如圖,因為AB∥CD,所以∠1=∠2,又因為∠2=∠3,所以∠1=∠3.所用的推理規(guī)則為

[  ]
A.

假言推理

B.

關系推理

C.

完全歸納推理

D.

三段論推理

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,因為AB∥CD,所以∠1=∠2,又因為∠2+∠3=180°,所以∠1+∠3=180°.所用的推理規(guī)則為(  )

查看答案和解析>>

科目:高中數學 來源:全優(yōu)設計選修數學-2-2蘇教版 蘇教版 題型:044

指出下列推理的兩個步驟分別遵循哪種推理規(guī)則?

如圖,因為四邊形ABCD是平行四邊形.

所以AB=CD,BC=AD.

又因為△ABC和△CDA的三邊對應相等.

所以△ABC≌△CDA.

查看答案和解析>>

科目:高中數學 來源:2013屆遼寧省盤錦市高二下期中理科數學試卷(解析版) 題型:選擇題

在數學證明中,①假言推理、②三段論推理、③傳遞關系推理、④完全歸納推理,是經常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的(     )如(右圖)

因為lAB,所以又因為AB//CD,所以

 所以

A. ①②③        B.②③④

C. ②③          D.①②③④

 

查看答案和解析>>

科目:高中數學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(天津卷解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設平面PCD的法向量,

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

同步練習冊答案