已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說明理由.
(1)f(x)的單調(diào)增區(qū)間為(-∞,-1)∪(1,+∞),單調(diào)減區(qū)間為(-1,1)(2)a≤0.(3)存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,且a≥3.
【解析】(1)當(dāng)a=3時(shí),f(x)=x3-3x-1,∴f′(x)=3x2-3,
令f′(x)>0即3x2-3>0,解得x>1或x<-1,
∴f(x)的單調(diào)增區(qū)間為(-∞,-1)∪(1,+∞),
同理可求f(x)的單調(diào)減區(qū)間為(-1,1).
(2)f′(x)=3x2-a.
∵f(x)在實(shí)數(shù)集R上單調(diào)遞增,
∴f′(x)≥0恒成立,即3x2-a≥0恒成立,∴a≤(3x2)min.
∵3x2的最小值為0,∴a≤0.
(3)假設(shè)存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,
∴f′(x)≤0在(-1,1)上恒成立,即a≥3x2.
又3x2∈[0,3),∴a≥3.
∴存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,且a≥3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
集合M={f(x)|存在實(shí)數(shù)t使得函數(shù)f(x)滿足f(t+1)=f(t)+f(1)},則下列函數(shù)(a、b、c、k都是常數(shù)):
① y=kx+b(k≠0,b≠0);② y=ax2+bx+c(a≠0);
③ y=ax(0<a<1);④ y=(k≠0);⑤ y=sinx.
其中屬于集合M的函數(shù)是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:填空題
在如圖所示的銳角三角形空地中,欲建一個(gè)面積最大的內(nèi)接矩形花園(陰影部分),則其邊長(zhǎng)x為________(m).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:填空題
如果關(guān)于x的方程ax+=3在區(qū)間(0,+∞)上有且僅有一個(gè)解,那么實(shí)數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:解答題
請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.
(1)某廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)某廠商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=x3-15x2-33x+6的單調(diào)減區(qū)間為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時(shí)練習(xí)卷(解析版) 題型:填空題
曲線f(x)= ex-f(0)x+ x2在點(diǎn)(1,f(1))處的切線方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時(shí)練習(xí)卷(解析版) 題型:填空題
若=x- (表示不超過x的最大整數(shù)),則方程-2013x=的實(shí)數(shù)解的個(gè)數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第8課時(shí)練習(xí)卷(解析版) 題型:填空題
已知△ABC中,AB邊上的高與AB邊的長(zhǎng)相等,則的最大值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com