已知分別是雙曲線的兩個焦點,是以(為坐標原點)為圓心,為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為(     )

A.            B.                  C.          D.

 

【答案】

D

【解析】解:,設(shè)F1F2=2c,

∵△F2AB是等邊三角形,

∴∠A F1F2==30°,

∴AF1=c,AF2= C,

∴a= (c-c) 2,e=2c  ( c-c)=  +1,

故選D

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點F1、F2分別是雙曲線的兩個焦點,P為該雙曲線上一點,若△PF1F2為等腰直角三角形,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

(2006北京宣武模擬)已知分別是雙曲線的兩個焦點,O為坐標原點,圓O是以為直徑的圓,直線ly=kxb與圓O相切,并與雙曲線交于A、B兩點.

(1)根據(jù)條件求出bk滿足的關(guān)系式;

(2)向量在向量方向的投影是p,當時,求直線l的方程;

(3),且滿足2m4時,求△AOB面積的取值范圍(其中p(2)中所述)

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高二下學期第三次月考理科數(shù)學試卷(解析版) 題型:選擇題

已知分別是雙曲線的兩個焦點,是以(為坐標原點)為圓心,為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為(     )

A.             B.              C.             D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西省高三年級第四次月考理科數(shù)學試卷 題型:解答題

已知分別是雙曲線的左、右焦點,過斜率為的直線交雙曲線的左、右兩支分別于兩點,過且與垂直的直線交雙曲線的左、右兩支分別于兩點。

(1)求的取值范圍;

求四邊形面積的最小值。

 

查看答案和解析>>

同步練習冊答案