對(duì)于坐標(biāo)平面內(nèi)的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),定義運(yùn)算“?”為:P1?P2=(x1,y1)?(x2,y2)=(x1x2-y1y2,x1y2+x2y1)若點(diǎn)M(x,y)(-2≤x≤-1),點(diǎn)N的坐標(biāo)為(x,y)?(1,1),則點(diǎn)N到直線x+y+2=0距離的最大值為   
【答案】分析:利用新定義求出N的坐標(biāo),然后利用點(diǎn)到直線的距離公式,求出距離表達(dá)式,然后求出最大值.
解答:解:因?yàn)樽鴺?biāo)平面內(nèi)的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),定義運(yùn)算“?”為:P1?P2=(x1,y1)?(x2,y2
=(x1x2-y1y2,x1y2+x2y1),
所以N的坐標(biāo)為(x,y)?(1,1)=(x-y,x+y);
點(diǎn)N到直線x+y+2=0距離為:==|x+1|(-2≤x≤-1),
所以點(diǎn)N到直線x+y+2=0距離的最大值為:
故答案為:
點(diǎn)評(píng):本題是基礎(chǔ)題,考查學(xué)生對(duì)新定義法理解和應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于坐標(biāo)平面內(nèi)的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),定義運(yùn)算“?”為:P1?P2=(x1,y1)?(x2,y2)=(x1x2-y1y2,x1y2+x2y1)若點(diǎn)M(x,y)(-2≤x≤-1),點(diǎn)N的坐標(biāo)為(x,y)?(1,1),則點(diǎn)N到直線x+y+2=0距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的傾斜角為θ,已知θ∈[0,
π
3
]

(Ⅰ)試用θ表示
BC
的坐標(biāo)(要求將結(jié)果化簡(jiǎn)為形如(cosα,sinα)的形式);
(Ⅱ)定義:對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)P(x1,y1)、Q(x2,y2),稱|x1-x2|+|y1-y2|為P、Q兩點(diǎn)間的“taxi距離”,并用符號(hào)|PQ|表示.試求|BC|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于坐標(biāo)平面內(nèi)的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),定義運(yùn)算“?”為:P1?P2=(x1,y1)?(x2,y2)=(x1x2-y1y2,x1y2+x2y1)若點(diǎn)M(x,y)(-2≤x≤-1),點(diǎn)N的坐標(biāo)為(x,y)?(1,1),則點(diǎn)N到直線x+y+2=0距離的最大值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于坐標(biāo)平面內(nèi)的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),定義運(yùn)算“?”為:P1?P2=(x1,y1)?(x2,y2)=(x1x2-y1y2,x1y2+x2y1)若點(diǎn)M(x,y)(-2≤x≤-1),點(diǎn)N的坐標(biāo)為(x,y)?(1,1),則點(diǎn)N到直線x+y+2=0距離的最大值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案