6.已知sin($\frac{π}{2}$+φ)=$\frac{1}{2}$且0<φ<π,則tanφ=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$-\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

分析 利用已知條件求出角的值,然后利用同角三角函數(shù)基本關(guān)系式求解即可.

解答 解:sin($\frac{π}{2}$+φ)=$\frac{1}{2}$且0<φ<π,
可得φ=$\frac{π}{3}$.
∴tanφ=$\sqrt{3}$.
故選:B.

點評 本題考查三角函數(shù)值的求法,同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b,c∈(0,+∞),且a+b+c=1,則$\sqrt{a}$+$\sqrt$+$\sqrt{c}$的最大值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項和為Sn,若a1008>0,a1007+a1008<0,則滿足SnSn+1<0的正整數(shù)n為( 。
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.實數(shù)x滿足|x2-x-2|+|${\frac{1}{x}}$|=|x2-x-2+$\frac{1}{x}}$|,則x的解集為{x|-1≤x<0或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從某廠生產(chǎn)的802輛轎車中抽取80輛測試某種性能,若先用簡單隨機抽樣從802轎車中剔除2輛,剩下的800輛再按系統(tǒng)抽樣方法進行,則每輛轎車被抽到的概率是(  )
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{10}$D.都相等,且為$\frac{40}{401}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.做拋擲兩顆骰子的試驗:用(x,y)表示結(jié)果,其中x表示第一顆骰子出現(xiàn)的點數(shù),y表示第二顆骰子出現(xiàn)的點數(shù).
(1)寫出試驗的基本事件;
(2)求事件“出現(xiàn)點數(shù)之和大于8”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知三棱錐S-ABC的四個頂點均落在球O的表面上,且SA⊥平面ABC,∠ABC=90°,$SA=BC=\frac{1}{2}AB=1$,則球O的體積與表面積的比值為(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓${Γ_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,其離心率為$\frac{1}{2}$;拋物線${Γ_2}:{y^2}=-4{a^2}x$的焦點F到準(zhǔn)線l的距離為8,H是準(zhǔn)線l上的點.
(1)求橢圓Γ1、拋物線Γ2的方程;
(2)過點F的直線交橢圓Γ1于P,Q兩點,設(shè)直線F2H,PH,QH的斜率分別為k1,k2,k3,探究:是否存在k1,k2,k3的一個排列(如“k3,k1,k2”,“k1,k3,k2”等),使得這個排列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線y2=2px(p>0)的焦點F與雙曲線$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的一個焦點重合,直線y=x-4與拋物線交于A,B兩點,則|AB|等于(  )
A.28B.32C.20D.40

查看答案和解析>>

同步練習(xí)冊答案