16.在等比數(shù)列{an}中,若a3,a15是方程x2-6x+8=0的根,則$\frac{{{a_1}{a_{17}}}}{a_9}$=2$\sqrt{2}$.

分析 由韋達定理得a3a15=8,由等比數(shù)列通項公式性質(zhì)得:${{a}_{9}}^{2}={a}_{3}{a}_{15}={a}_{1}{a}_{17}$=8,由此能求出$\frac{{{a_1}{a_{17}}}}{a_9}$的值.

解答 解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+8=0的根,
∴a3a15=8,
解方程x2-6x+8=0,得$\left\{\begin{array}{l}{{a}_{3}=2}\\{{a}_{15}=4}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{3}=4}\\{{a}_{15}=2}\end{array}\right.$,
∴a9>0,
由等比數(shù)列通項公式性質(zhì)得:${{a}_{9}}^{2}={a}_{3}{a}_{15}={a}_{1}{a}_{17}$=8,
∴$\frac{{{a_1}{a_{17}}}}{a_9}$=a9=$\sqrt{8}=2\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點評 本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)={x^3}+\frac{5}{2}{x^2}+ax+b({a,b∈R})$,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在x=-1時取得極大值2,求a,b的值;
(2)若函數(shù)$F(x)=2f(x)-\frac{5}{2}{x^2}-({2a-1})x-3b$存在三個不同的零點,求實數(shù)b的取值范圍;
(3)設(shè)動點A(x0,f(x0))處的切線l1與曲線 C交于另一點B,點B處的切線為l2,兩切線的斜率分別為k1,k2,當(dāng)a為何值時存在常數(shù)λ使得k2=λk1?并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面為邊長為1的正方形,側(cè)棱AA1=2
(1)求直線DC與平面ADB1所成角的大小;
(2)在棱上AA1是否存在一點P,使得二面角A-B1C1-P的大小為30°,若存在,確定P的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列敘述中錯誤的是( 。
A.若點P∈α,P∈β且α∩β=l,則P∈l
B.三點A,B,C能確定一個平面
C.若直線a∩b=A,則直線a與b能夠確定一個平面
D.若點A∈l,B∈l,且A∈α,B∈α,則l?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知兩條平行直線3x+2y-6=0與6x+4y-3=0,則與它們等距離的平行線方程為12x+8y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$f(x)=\left\{\begin{array}{l}{log_a}({a{x^2}-4x+4}),x≥1\\({3-a})x+b,x≤1\end{array}\right.$在(-∞,+∞)上滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則b的取值范圍是( 。
A.(-∞,0)B.[1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題錯誤的是(  )
A.命題“若x2=1,則x=1”的否定形式為:“若x2=1,則x≠1”.
B.命題“若x2+y2=0,則x=y=0”的逆否命題為真.
C.△ABC中,sinA>sinB是A>B的充要條件.
D.若向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$>0,則$\vec a$與$\vec b$的夾角為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有5個男生和3個女生,從中選出5人擔(dān)任5門不同學(xué)科的科代表,求分別符合下列條件的選法數(shù):
(1)有男生、有女生且男生人數(shù)多于女生;
(2)某男生一定要擔(dān)任數(shù)學(xué)科代表;
(3)某女生必須包含在內(nèi),但不擔(dān)任數(shù)學(xué)科代表;
( 4 ) 某女生一定擔(dān)任語文科代表,某男生必須擔(dān)任科代表,但不擔(dān)任數(shù)學(xué)科代表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知a=17,b=24,A=45°,則此三角形( 。
A.無解B.有兩解C.有一解D.解的個數(shù)不確定

查看答案和解析>>

同步練習(xí)冊答案