命題p:?x∈[0,+∞),(log32)x≤1,則( 。
A、p是假命題,¬p:?x0∈[0,+∞),(log32)x0>1B、p是假命題,¬p:?x∈[0,+∞),(log32)x>1C、p是真命題,¬p:?x0∈[0,+∞),(log32)x0>1D、p是真命題,¬p:?x∈[0,+∞),(log32)x≥1
分析:利用指數(shù)函數(shù)的單調(diào)性判斷出命題p是真命題;據(jù)含量詞的命題的否定形式寫出否命題.
解答:解::∵0<log32<1
∴?x∈[0,+∞),(log32)x≤1成立即命題p是真命題
?x∈[0,+∞),(log32)x≤1的否定
?x0∈[0,+∞),(log32)x0>1
故選C
點評:本題考查含量詞的命題的否定形式:是量詞任意和存在互換,結(jié)論否定.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

12、已知命題p:“?x∈[0,1],lna≥x”,命題q:“?x∈R,x2+4x+a=0”,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是
[e,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈[0,
π
2
],cos2x+cosx-m=0
為真命題,則實數(shù)m的取值范圍是( 。
A、[-
9
8
,-1]
B、[-
9
8
,2]
C、[-1,2]
D、[-
9
8
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中真命題的個數(shù)是
①若a,b∈[0,1],則不等式a2+b2<4成立的概率是
π
4
;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③“若am2<bm2,則a<b”的逆命題為真
④命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果命題P是?x≥0,2x=3,命題P的否定是
?x≥0,2X≠3
?x≥0,2X≠3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•晉中三模)有關(guān)命題的說法錯誤的是( 。

查看答案和解析>>

同步練習冊答案