精英家教網 > 高中數學 > 題目詳情

中心在原點O,焦點在x軸上的橢圓與直線x+y-1=0交于A,B兩點,M為AB的中點.若OM的斜率為,橢圓的短軸長為2.求此橢圓的方程.

答案:
解析:

解 由題意,設橢圓方程為=1,

=0.

∴所求橢圓方程為


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知又曲線的中心在原點O,焦點在x軸上,它的虛軸長為2,且焦距是兩準線間距離的2倍,則該雙曲線的方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓E的中心在原點O,焦點在x軸上,離心率e=
2
3
,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:
CA
BC
(λ≥2).
(1)若λ為常數,試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數,當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在原點O,焦點在x軸上,過右焦點F的直線與右準線交于點D,與橢圓交于A、B兩點,右準線與x軸交于C點,若|
FC
|,|
CD
|,|
FD
|
成等差數列,且公差等于短軸長的
1
6

(1)求橢圓的離心率; 
(2)若△OAB的面積為20
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓E中心在原點O,焦點在x軸上,其離心率e=
2
3
,過點C(-1,0)的直線l與橢圓E相交于A、B兩點,且滿足
AC
=2
CB

(Ⅰ)用直線l的斜率k(k≠0)表示△OAB的面積;
(Ⅱ)當△OAB的面積最大時,求橢圓E的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知中心在原點O,焦點在x軸上的橢圓E過點(0,1),離心率為
2
2

(I)求橢圓E的方程;
(II)若直線l過橢圓E的左焦點F,且與橢圓E交于A、B兩點,點A關于x軸的對稱點為C,直線BC與x軸交于點M,當△MAF的面積為
1
2
,求△MAC的內切圓方程.

查看答案和解析>>

同步練習冊答案