已知函數(shù)
(1)求在點處的切線方程;
(2)證明:曲線與曲線有唯一公共點;
(3)設(shè),比較與的大小, 并說明理由.
(1)
解析試題分析:(1)首先求出,令,即可求出在點處的切線方程的斜率,代入點斜式即可求出切線方程
(2)令 則,根據(jù),討論在上單調(diào)遞增,所以,所以在上單調(diào)遞增,
,又,即函數(shù)有唯一零點,所以曲線與曲線有唯一公共點.
(3)作差得,令,討論, 的單調(diào)性,得到在上單調(diào)遞增,而,所以在上,可得時,
(1) ,則,點處的切線方程為:,
(2) 令 ,,則,
且,,
因此,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.
所以,所以在上單調(diào)遞增,又,即函數(shù)有唯一零點,
所以曲線與曲線有唯一公共點.
(3) 設(shè)
令且,則
,所以 在上單調(diào)增,且 ,
因此,在上單調(diào)遞增,而,所以在
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線 y = x3 + x-2 在點 P0 處的切線 平行直線
4x-y-1=0,且點 P0 在第三象限,
求P0的坐標(biāo); ⑵若直線 , 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,在函數(shù)圖象上取不同兩點A、B,設(shè)線段AB的中點為,試探究函數(shù)在Q點處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)時圖象是否存在不同的兩點A、B具有(2)問中所得出的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•福建)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時,是否同時存在實數(shù)m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點?若存在,求出最小的實數(shù)m和最大的實數(shù)M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)討論在內(nèi)和在內(nèi)的零點情況.
(2)設(shè)是在內(nèi)的一個零點,求在上的最值.
(3)證明對恒有.[來
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com