已知正方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)都在球O的球面上,則正方體ABCD-A1B1C1D1的體積與球O的體積之比為
 
分析:先求正方體的棱長(zhǎng)為a和球的半徑為R之間的數(shù)量關(guān)系,利用體積公式可求出體積之比.
解答:解:設(shè)正方體的棱長(zhǎng)為a,球的半徑為R,
3
a=2R,∴R=
3
2
a,∴正方體ABCD-A1B1C1D1的體積與球O的體積之比為
a3
4
3
π R3
=
a3
4
3
π
3
3
8
a3
=
2
3
π
,
故答案為2:
3
π
點(diǎn)評(píng):此題即考查了正方體和球的體積,也考查了空間想象力,本題人入手處,要清楚正方體的體對(duì)角線就是圓的直徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)P在平面DD1C1C內(nèi),PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點(diǎn),那么直線AE與D1F所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1的動(dòng)點(diǎn).
(1)當(dāng)E恰為棱CC1的中點(diǎn)時(shí),試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個(gè)點(diǎn)E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點(diǎn)E在棱CC1上的位置;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知正方體ABCD-A1B1C1D1,O是底ABCD對(duì)角線的交點(diǎn).
(1)求證:C1O∥面AB1D1;
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案