已知橢圓的中心在原點,準線方程為x=±4,如果直線:3x-2y=0與橢圓的交點在x軸上的射影恰為橢圓的焦點.
(1)求橢圓方程;
(2)設直線與橢圓的一個交點為P,F(xiàn)是橢圓的一個焦點,試探究以PF為直徑的圓與橢圓長軸為直徑的圓的位置關系;
(3)把(2)的情況作一推廣:寫出命題(不要求證明).
解:(1)設橢圓方程為 (a>b>0)
直線3x-2y=0與橢圓的一個交點的坐標是,代入橢圓方程得:
又 a2=b2+c2
∴ a=2 C=1
∴ ………………5分
(2)由(1)知,直線與橢圓的一個交點為,F(xiàn)(1,0),則從PF為直徑的圓的方程,圓心為,半徑為
以橢圓長軸為直徑的圓的方程為x2+y2=4,圓心(0,0),半徑為2
兩圓圓心之間距離為
∴ 兩圓內(nèi)切 ………………8分
P、F為其它三種情況時,兩圓都為內(nèi)切 ………………10分
(3)如果橢圓的方程是 (a>b>0),P是橢圓上的任意一點,F(xiàn)是橢圓的一個焦點,則以PF長為直徑的圓與以橢圓長軸為直徑的圓是內(nèi)切關系。 …………13分
(如P寫成橢圓上的定點,此問只給1分)
科目:高中數(shù)學 來源: 題型:
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
25 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
2 |
3 |
4 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com