已知函數(shù),,k為常數(shù),e是自然對數(shù)的底數(shù)).
(I)當k=1時,求f(x)的最小值;
(II)探求是否存在整數(shù)k使得f(X)在區(qū)間上的圖象均在第一、二象限?若存在,求出k的最大值;若不存在,請說明理由;
(III)設函數(shù),記,求證:



(1)求導,寫出單調區(qū)間;(2)探究求解;(3)轉化證明。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)上的增函數(shù),求k的取值范圍;
(2)若對任意的x>0都有求滿足條件的最大整數(shù)k的值。
(3)證明:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),其中.
(1)當時,求的單調遞增區(qū)間;
(2)求實數(shù)的取值范圍,使得對任意的,都有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù),求函數(shù)的單調區(qū)間;
(Ⅱ)設直線為函數(shù)的圖象上一點處的切線.證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)有兩個極值點滿足,則直線的斜率的取值范圍是(  )                          
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值;
(2)當時,若在區(qū)間上不單調,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用長為18 m的鋼條圍成一個長方體容器的框架,如果所制的容器的長與寬之比為2∶1,那么高為多少時容器的容積最大?并求出它的最大容積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調遞增區(qū)間是        (    )
A.B.(0,3)C.(1,4)D.

查看答案和解析>>

同步練習冊答案